BNP-Seq: Bayesian Nonparametric Differential Expression Analysis of Sequencing Count Data

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BNP-Seq: Bayesian Nonparametric Differential Expression Analysis of Sequencing Count Data

We perform differential expression analysis of high-throughput sequencing count data under a Bayesian nonparametric framework, removing sophisticated ad-hoc pre-processing steps commonly required in existing algorithms. We propose to use the gamma (beta) negative binomial process, which takes into account different sequencing depths using sample-specific negative binomial probability (dispersio...

متن کامل

Differential Expression Analysis for RNA-Seq Data

RNA-Seq is increasingly being used for gene expression profiling. In this approach, next-generation sequencing (NGS) platforms are used for sequencing. Due to highly parallel nature, millions of reads are generated in a short time and at low cost. Therefore analysis of the data is a major challenge and development of statistical and computational methods is essential for drawing meaningful conc...

متن کامل

Error estimates for the analysis of differential expression from RNA-seq count data

Background. A number of algorithms exist for analysing RNA-sequencing data to infer profiles of differential gene expression. Problems inherent in building algorithms around statistical models of over dispersed count data are formidable and frequently lead to non-uniform p-value distributions for null-hypothesis data and to inaccurate estimates of false discovery rates (FDRs). This can lead to ...

متن کامل

Nonparametric Bayesian Data Analysis

We review the current state of nonparametric Bayesian inference. The discussion follows a list of important statistical inference problems, including density estimation, regression, survival analysis, hierarchical models and model validation. For each inference problem we review relevant nonparametric Bayesian models and approaches including Dirichlet process (DP) models and variations, Polya t...

متن کامل

Bayesian Differential Analysis of Gene Expression Data

This paper describes a novel Bayesian method for the differential analysis of large scale gene expression data. The novelty of the method is the use of a contamination model that integrates the different sources of variability that affect gene expression data measured with microarray technology, thus removing the need for arbitrary normalization.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the American Statistical Association

سال: 2018

ISSN: 0162-1459,1537-274X

DOI: 10.1080/01621459.2017.1328358